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Direct numerical simulations (DNS) of a three-dimensional spatially-developing mix-
ing layer (ML) laden with spherical gaseous bubbles are performed, with both one-
way and two-way coupling between the two phases. Forcing is used to initialize the
spanwise vortex roll-up and to create a pair of counter-rotating streamwise vortices,
rendering the carrier flow three-dimensional. The characteristics of the resulting ML
flow field are similar to those reported in numerous experimental and numerical stud-
ies. The volume fraction (or concentration) of the bubble phase is considered small
enough to neglect bubble–bubble interactions. The no-slip fluid velocity condition
is assumed at the bubble surface, and the bubble Reynolds number is less than 1
throughout the simulation time. The two-fluid formulation (TF) is used to compute
the bubble-phase velocity and concentration and the two-way coupling source term
in the fluid momentum equation. A Lagrangian–Eulerian mapping (LEM) solver is
employed to solve the equations for the bubble velocity and concentration. LEM is
capable of resolving the gradients of concentration created by the bubble preferential
accumulation without numerical instabilities. Two different inflow profiles (Cref (z)) of
bubble-phase concentration are considered: a uniform profile and a tanh-profile. In
the latter case, the high-speed (upper) stream is devoid of bubbles, and the low-speed
(lower) stream is uniformly laden with bubbles at the inflow plane.

The DNS results show that in addition to the well-known preferential accumulation
of bubbles in the vortex centres, sheets of increased bubble concentration (C-sheets)
develop in the rollers created by the vortex pairing in the ML core, with two local
maxima of vorticity and an enhanced strain-rate field. The development of C-sheets
is governed by the stretching and contraction along the principal axes of the local
strain rate.

In the case of uniform Cref , the two-way coupling reduces the average ML vorticity
thickness and the entrainment of the irrotational fluid into the ML core, as compared
to the bubble-free case, upstream of the location of the first vortex pairing. However,
both ML vorticity thickness is increased and entrainment is enhanced by the bubbles
farther downstream, after the pairing. The fluid velocity fluctuations are reduced by
the bubbles throughout the ML, as compared to the one-way coupling case.

In the case of the tanh-profile of Cref , the velocity fluctuations and the ML vorticity
thickness are increased by the bubbles upstream the location of the first vortex pairing
owing to the ‘unstable’ inflow bubble stratification (Druzhinin & Elghobashi 1998).

† Permanent address: Applied Physics Institute, Russian Academy of Sciences, 603600 Nizhni
Novgorod, Russia.
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On the other hand, the velocity fluctuations are reduced by the bubbles, and the ML
vorticity thickness oscillates with the streamwise distance farther downstream.

1. Introduction
Turbulent free shear flows laden with particles (solid particles, liquid droplets or

gaseous bubbles) are encountered in many engineering applications. Of particular
interest are the processes of particle dispersion by turbulence and the modification of
the turbulence by the particles (Crowe, Gore & Trout 1985; Crowe, Chung & Trout
1993; Elghobashi 1994).

A plane mixing layer (ML) between two fluid streams of different velocities can
be regarded as a canonical turbulent free shear flow (Ho & Huerre 1984). This flow
has attracted the attention of many researchers owing to its relatively simple geom-
etry which allows its laboratory implementation (Brown & Roshko 1974; Winant &
Browand 1974; Breidenthal 1981; Bernal & Roshko 1986; Lasheras, Cho & Max-
worthy 1986; Lasheras & Choi 1988; Koochesfahani & Dimotakis 1986), numerical
simulation (Lowery & Reynolds 1986; Buell & Mansour 1989; Sandham & Reynolds
1989; Rogers & Moser 1992; Moser & Roger 1993), as well as theoretical analysis
(Michalke 1964; Pierrehumbert & Widnall 1982; Corcos & Lin 1984; Corcos &
Sherman 1984; Lin & Corcos 1984). These studies show that this flow provides a
wealth of information about the evolution of large-scale coherent structures and their
interaction with small-scale turbulence. The basic features of the ML development
can be summarized as follows.

The growth of the most unstable fundamental mode, due to the Kelvin–Helmholtz
instability, triggers the initial roll-up of the spanwise vortex sheet created by the
velocity jump. The subsequent growth of the subharmonic mode results in pairing of
the co-rotating neighbouring spanwise rollers. The growth of the spanwise rollers and
their pairings are responsible for increasing the ML lateral thickness. The spanwise
disturbances of the rollers (present naturally in the experiment, or prescribed in
the direct numerical simulations (DNS) as an initial condition) grow and produce
pairs of counter-rotating streamwise vortices. The streamwise vorticity is enhanced
by the strain field in the braid zone between the consecutive spanwise rollers. The
wavelength of the most unstable spanwise mode equals approximately two-thirds
of the wavelength λx of the fundamental mode (λx ' distance between the centres
of consecutive spanwise rollers). The growth of the streamwise vortices renders ML
three-dimensional, and, at sufficiently large Reynolds numbers, the flow eventually
becomes fully turbulent.

There are two approaches to the numerical simulation of the mixing layer: tempo-
rally developing (TDML) and spatially developing (SDML). In TDML, the flow is
periodic in the streamwise direction. This imposed periodicity results in a streamwise
mean velocity profile which is antisymmetric with respect to the inflection point of
that profile. This velocity profile evolves in time from a given initial condition. In
SDML, which occurs naturally in a laboratory experiment and is more relevant for
practical applications, the mean velocity is steady at any fixed streamwise location,
and the flow field is no longer periodic in the streamwise direction. The experimental
and numerical studies of SDML show that the entrainment rate of fluid from the
high-speed stream into the ML core is larger than that from the low-speed stream
(Dimotakis 1986; Koochesfahani & Dimotakis 1986; Lowery & Reynolds 1986). This
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asymmetry is a direct consequence of the spatial development of ML. Consequently,
SDML ‘bends’ towards the low-speed stream, so that the mean flow profile also
becomes asymmetrical (Lowery & Reynolds 1986).

Particle dispersion in SDML has been studied experimentally by a few researchers
(Lazaro & Lasheras 1992a, b; Crowe et al. 1993). These experiments show that
the distribution of heavy particles is controlled by their accumulation in the streaks
located in the braid zones between the spanwise rollers. Particle dispersion is enhanced
in the forced ML, and is most effective for the particles whose response time is of the
order of the timescale of the spanwise rollers. The measurements in SDML of gas
laden with water droplets by Kiger & Lasheras (1995) show that the kinetic energy
transfer between the carrier gas and droplets is inhomogeneous, and the two-way
coupling process diminishes in the ML core region which is devoid of droplets owing
to their preferential accumulation in the streaks. The pairing of the large-scale rollers
reduces the inhomogeneity of droplet dispersion.

DNS of particle-laden, three-dimensional SDML is a challenging task since it
requires the simultaneous solution of the equations of fluid motion and those of the
dispersed particles. All known DNS studies of particle-laden, turbulent shear flows use
the Eulerian–Lagrangian (or trajectory) approach (Elghobashi 1994). In this approach,
the dispersed phase is represented by an ensemble of computational particles. Thus,
the equation of motion of each computational particle is solved, and the surrounding
carrier flow velocity (i.e. the fluid velocity at the instantaneous particle location) is
evaluated via interpolation. This trajectory approach is computationally expensive,
especially in the two-way coupling case, where a sufficient number of computational
particles is required to represent the actual volume fraction of the real particles.

Crowe et al. (1985), Wen et al. (1992), Crowe et al. (1993), Martin & Meiburg
(1994) and Crowe, Troutt & Chung (1996) considered an inviscid flow, and employed
a point-vortex model to simulate the two-dimensional particle-laden TDML with one-
way coupling. More recent studies employed DNS to investigate the three-dimensional
TDML with one-way (Marcu & Meiburg 1996; Ling et al. 1998) and two-way (Miller
& Bellan 1999) coupling. Numerical simulation of a bubble-laden TDML with two-
way coupling was performed only in the two-dimensional case by Ruetsch & Meiburg
(1994).

In a recent study, Druzhinin & Elghobashi (1998) used the two-fluid formulation
(TF) to perform DNS of a decaying isotropic turbulence laden with microbubbles.
In another study, Druzhinin & Elghobashi (1999) used TF to perform DNS of
a bubble-laden homogeneous shear turbulent flow, and developed a Lagrangian–
Eulerian mapping (LEM) solver, capable of resolving the gradients created by the
preferential accumulation of microbubbles without numerical instabilities.

The objective of this paper is to perform DNS of a three-dimensional spatially
developing turbulent mixing layer laden with small spherical gaseous bubbles, with
one- and two-way coupling, using the two-fluid formulation. The motivation for this
study is to enhance the understanding of the physical phenomena encountered in
this flow. In particular, we consider two different inflow profiles of the bubble-phase
concentration: a uniform profile and a tanh-profile. In the former case, the inflow
bubble concentration is uniform, whereas in the latter case, the high-speed (upper)
stream is devoid of bubbles and the low-speed (lower) stream is uniformly laden with
bubbles.

The paper is organized as follows. The governing equations of motion of the
bubble-laden flow and the numerical method are described in § 2. Section 3 presents
the test case of a bubble-laden Stuart vortex (with one-way coupling). The results
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Figure 1. Reference frame and the inflow streamwise velocity profile for a spatially developing
mixing layer.

of DNS of three-dimensional SDML with uniform inflow bubble distribution, with
one- and two-way coupling, are presented in § 4. The results for three-dimensional
SDML with inflow tanh bubble distribution are discussed in § 5. Concluding remarks
are presented in § 6.

2. Governing equations and numerical method
2.1. Equations of motion for a spatially developing bubble-laden mixing layer

We consider a spatially developing mixing layer with an inflow ‘reference’ dimension-
less streamwise velocity profile, Uref (z), at x = 0 (see figure 1) in the form:

Uref (z) = 0.5 tanh 2z + 1.5. (2.1)

All the variables in equations (2.1)–(2.8) are dimensionless via scaling by the dimen-
sional velocity difference, U∗+ − U∗− = ∆U∗, where U∗+ and U∗− are the dimensional
velocities of the high- and low-speed streams, respectively. The corresponding dimen-
sionless velocities are U+ = 2 and U− = 1, such that U± = Uref (z → ±∞), and
∆U = U+ −U− = 1, and the dimensionless initial vorticity thickness, δω0, is:

δω0 =
∆U

dUref /dz

∣∣∣∣
z=0

= 1. (2.2)

Spherical bubbles are injected into the mixing layer at the inflow plane. The bubble
diameter, db, is much smaller than δω0. We average the equations of motion of the
fluid and bubble over a lengthscale of the order of a dissipation scale, ldiss (to be
defined below), which is much smaller than δω0, but much larger than the bubble
diameter. Thus, the bubble phase can be treated as a continuum characterized by the
velocity V (r, t) and concentration (volume fraction) C(r, t) = πd3

bn(r, t)/6, where n(r, t)
is the bubble number density.

We consider two different reference profiles for the bubble concentration at the
inflow plane: a uniform profile,

Cref (x = 0) = α0, (2.3)

or a tanh-profile,

Cref (x = 0, z) = 0.5α0(1− tanh 2z), (2.4)

where α0 is considered small enough (α0 6 10−2) to neglect the bubble–bubble
interactions.

We assume that the bubble gas density, ρb, is negligible compared to the carrier fluid
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density, ρf . The velocity boundary condition at the bubble surface is effectively that
for a solid sphere (no-slip). We neglect the Basset and lift forces in the considered case
of small bubbles (Magnaudet 1997; Druzhinin & Elghobashi 1998) whose Reynolds
number is less than 1.

Thus, the governing dimensionless equations of the conservation of the momentum
and mass for the fluid and bubble phases are (Druzhinin & Elghobashi 1998):

DŨi

Dt
+Uref ∂xŨi + Ũzδix

dUref

dz
= − 1

ρf
∂iP̃ + ν

(
δix

d2Uref

dz2
+ ∂2Ũi

)
+ (C − Cref )gδiz,

(2.5)

∂jŨj = 0, (2.6)

dṼi
dt

+Uref ∂xṼi + Ṽzδix
dUref

dz
= 3

(
DŨi

Dt
+Uref ∂xŨi + Ũzδix

dUref

dz

)
+

1

τb
(Ũi − Ṽi +Wδiz), (2.7)

dC

dt
+Uref ∂xC = −C∂jṼj . (2.8)

In the above equations, Ũi and Ṽi are the deviations of the instantaneous fluid and
bubble velocities from the reference profile Uref , and C is the bubble concentration.
The dimensionless viscosity is prescribed as ν = 1/Re, where Re = ∆U∗δ∗ω0/ν

∗ is the
Reynolds number based on the dimensional velocity difference ∆U∗, the dimensional
vorticity thickness δ∗ω0 and the dimensional fluid kinematic viscosity ν∗. The notations
for the total derivatives are D/Dt = ∂t + Ũj∂j and d/dt = ∂t + Ṽj∂j . The bubble
response time, τb, and the bubble terminal velocity, W , are:

τb =
d2
b

36ν
, (2.9)

and

W = 2τbg, (2.10)

where g is the projection of the gravity acceleration on the z-axis, gi = −gδiz . The
modified pressure field, P̃ , is defined as

P̃ = P + ρfg

∫ z

0

(1− Cref ) dz, (2.11)

where P is the dynamic pressure field, and Cref is given by (2.3) or (2.4). Thus, the
two-way coupling term in the fluid momentum equation (2.5) is analogous to the
buoyancy term, associated with the Boussinesq approximation for a stratified fluid
with density (1− C)ρf . Note that this form of the two-way coupling term is a direct
consequence of neglecting the bubble material inertia for ρb � ρf , since, in this case,
the viscous drag and added-mass forces are balanced by the pressure gradient and
buoyancy forces (Druzhinin & Elghobashi 1998).

2.2. Numerical method for the carrier flow

Figure 1 shows the flow geometry and reference frame. In order to perform DNS in
a finite computational domain which corresponds to a physical domain of infinite
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extent in the vertical (z) direction, and to resolve the ML core zone with sufficient
accuracy, a mapping for the z-coordinate is introduced in the form:

ξ = tanh
z

8
(2.12)

and

z = 4 ln

(
1 + ξ

1− ξ
)
, (2.13)

so that, for −1 6 ξ 6 1, −∞ < z < ∞. Thus, the partial derivatives with respect to z
in equations (2.5)–(2.8) are expressed as:

∂

∂z
=

(
1− ξ2

8

)
∂

∂ξ
. (2.14)

Accordingly, the reference velocity (2.1) and its first and second derivatives are
obtained as explicit functions of ξ according to (2.12) and the equality (tanh 2z =
2 tanh z/(1 + tanh2 z)). The mapping (2.12) has been employed recently by Cortesi,
Yadigaroglu & Banerjee (1998) in a numerical study of a stably stratified TDML.

The three-dimensional momentum conservation and continuity equations (2.5)–(2.8)
are solved numerically in a parallelepiped computational domain whose dimensionless
sides are 0 6 x 6 80, 0 6 y 6 5.333 and −1 6 ξ 6 1. Equations (2.5) and (2.6) for
the fluid phase are discretized in an Eulerian framework using a second-order finite-
differencing on an equispaced staggered grid containing Nx = 480 points in the x-
direction, Ny = 32 in the y-direction and Nz = 96 in the z(ξ)-direction. The Reynolds
number is Re = 400. The integration is performed with timestep ∆t = 0.1∆x = 1/60.

The mean advection terms, Uref ∂xŨi, are evaluated using a second-order upwind
differencing scheme, also employed by Lowery & Reynolds (1996). A second-order
Adams–Bashforth scheme is used to integrate the equations in time. Pressure is
obtained by solving its Poisson equation via a cosine transform with FFT (Wilhelmson
& Ericksen 1977; Schumann & Sweet 1988) in the x-direction, employing FFT in the
y-direction, and Gaussian elimination in the z(ξ)-direction (Schmidt, Schumann &
Volker 1984).

Standard periodic boundary conditions are imposed in the spanwise (y) direction
for the velocity components, pressure and the bubble concentration. The Neumann’s
(stress-free) conditions are imposed in the z(ξ)-direction according to:

∂φ

∂ξ
= 0, at ξ = ±1, (2.15)

where φ denotes the bubble and fluid velocities, pressure and the concentration.

Two different boundary conditions are imposed in the streamwise (x) direction at
the inflow (y, z) plane, at x = 0, and the outflow plane, at x = 80.

At the inflow plane (x = 0), forcing is used to initialize the spanwise vortex roll-up,
as proposed by Lowery & Reynolds (1986). Thus, the unsteady fluid velocity com-
ponents, Uf

x (z, t) and Uf
z (z, t), at x = 0 are composed of the product of harmonic

functions of time, and the eigenfunctions of the most unstable (fundamental) mode
with frequency Ω0 = 4/3, and its first and second subharmonics, Ω1,2. The eigen-
functions are obtained by solving the two-dimensional Rayleigh-equation eigenvalue
problem (see Appendix A) for each of the three frequencies Ω0,1,2. We follow the
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Figure 2. Mapping of the Eulerian grid, r(t) = xg , on the Lagrangian grid r(t+ dt) = xg + dr. At
time t the Lagrangian grid nodes (empty circles) coincide with the Eulerian grid nodes (filled circles
in figure 2a). At time t+ dt, the Lagrangian grid nodes are shifted with respect to the Eulerian grid
nodes (figure 2b).

proposal of Sandham & Reynolds (1989) and include random-walk phases in the
forcing functions to simulate a natural ML. All modes are forced at an amplitude of
0.02.

In order to initialize the three-dimensional flow structure we follow Buell & Man-
sour (1989), and supplement the inflow fluid velocity by steady components Uv

y(y, z)
and Uv

z (y, z), created by a pair of counter-rotating Gaussian vortices with a core
diameter equal to the initial vorticity thickness of the layer, δω0 = 1, and a core
vorticity 0.03 (which is 3% of the initial maximum spanwise vorticity). More details
about the inflow conditions are given in the Appendix.

The inflow bubble concentration is prescribed according to the reference profile
(uniform (2.3) or tanh (2.4)), and the inflow bubble velocity is set equal to the
instantaneous local fluid inflow velocity.

At the outflow plane (x = 80), a time-dependent, advection condition is imposed
as:

∂tφ+Ua∂xφ = 0, (2.16)

where φ denotes the velocities Ũi, Ṽi and concentration C . Ua is the nominal speed of
the vortex structures defined by Lowery & Reyolds (1986) as Ua = (U+ +U−)/2 = 1.5,
i.e. the average of the high- and low-speed stream velocities, U+ = 2 and U− = 1.

2.3. Lagrangian–Eulerian mapping solver for the bubble velocity and concentration

Druzhinin & Elghobash (1999) developed a Lagrangian–Eulerian mapping (LEM)
solver for the integration of the equations of the bubble-phase velocity and concen-
tration in a homogeneous shear turbulent flow. In the case of microbubbles whose
diameter is less than the Kolmogorov lengthscale, the LEM solver eliminates the
numerical instabilities which arise if (2.7) and (2.8) are integrated via the standard
finite-difference schemes. In this section, we show how the LEM solver is implemented
in the DNS of the bubble-laden three-dimensional SDML.

The objective of the LEM solver is to obtain the values of the instantaneous bubble
velocity, Ṽ (r, t), and concentration, C(r, t), at the Eulerian grid nodes (r = xg) (figure
2). We first integrate (2.7) and (2.8) using the LEM solver, without taking into account
the advection terms associated with the reference velocity, Uref ∂xṼi and Uref ∂xC . The
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resulting equations are

dV̂i
dt

= −ṼzδixdUref

dz
+ 3

(
DŨi

Dt
+Uref ∂xŨi + Ũzδix

dUref

dz

)
+

1

τb
(Ũi − Ṽi +Wδiz),

(2.17)

dĈ

dt
= −C∂jṼj , (2.18)

where V̂i and Ĉ denote intermediate values of bubble velocity and concentration,
respectively.

Thus, the LEM solver first evaluates the intermediate bubble-phase velocity,
V̂ (xg, t), and concentration, Ĉ(xg, t), via time integration of (2.17) and (2.18) along the
characteristics r(t) which coincide with the trajectories of bubbles that were located
at time t at the nodes of the Eulerian grid (xg = r(t)) (see figure 2). These inter-

mediate values, V̂ (r(t+ dt), t+ dt) and Ĉ(r(t+ dt), t+ dt), are computed at the nodes
of a Lagrangian grid (r(t + dt)) coinciding with the new locations of the bubbles.
Thus, the nodes of this Lagrangian grid (r(t + dt)) are shifted with respect to the
Eulerian grid nodes (xg). The displacements of the bubbles during the timestep dt
from their locations at time t, at the nodes of the Eulerian grid, to the nodes of the
Lagrangian grid are much smaller than the mesh size of the Eulerian grid. This small
displacement allows us to evaluate the intermediate fields at the Eulerian grid nodes,
V̂ (xg, t+ dt) and Ĉ(xg, t+ dt), via second-order finite differencing. These solutions for
the bubble velocity and concentration at the Eulerian grid nodes represent the final
step in the LEM solver for a non-sheared flow (e.g. the Stuart vortex flow discussed in
§ 3).

In the case of SDML, we have to account for the advection terms (due to the
reference velocity, i.e. second term on the left-hand side of both (2.7) and (2.8)). Thus,
we evaluate the bubble velocity, Ṽ , and concentration, C , at the upstream position
from where it is advected by the mean velocity Uref (in the x-direction) during the
timestep dt as:

Ṽi = V̂i −Uref ∂xV̂idt (2.19)
and

C = Ĉ −Uref ∂xĈ dt, (2.20)

where the gradients of V̂i and Ĉ are evaluated via a second-order upwind differencing
(Lowery & Reynolds 1986).

The DNS computations using the LEM solver, with both one-way and two-way
coupling, require at least one order of magnitude less CPU-time than those using the
trajectory approach.

3. Bubble dispersion in a Stuart vortex flow
As a test case of our numerical procedure, we study the dispersion of small spherical

bubbles in a Stuart vortex flow with one-way coupling. The Stuart vortex flow was
also used as a test simulation by Lowery & Reynolds (1986). This flow consists
of a row of co-rotating vortices and may be regarded as an idealized model of a
plane mixing layer (Stuart 1967). Dispersion of solid particles in the Stuart flow has
been studied numerically in the one-way coupling case by Tio et al. (1993a, b) and
both analytically and numerically in the two-way coupling case by Druzhinin (1995).
Our objective here is to examine the performance of our numerical procedure and
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compare the numerical results with an asymptotic analytical solution for the temporal
development of bubble concentration at the vortex centre. For convenience, we omit
in this section the tildes in the notations for the fluid and bubble velocities.

Stuart flow represents an exact two-dimensional, steady solution of the Euler
equations. The local stream function of this flow, in the (x, z)-plane, can be written as:

Ψ (x, z) = ω0

(
1− κ
1 + κ

)
lnD, (3.1)

where

D = cosh z − κ cos x;

ω0 is the maximum vorticity, and κ is a positive constant.
The fluid velocity components (Ux,Uz) are:

Ux =
∂Ψ

∂z
= ω0

(
1− κ
1 + κ

)
sinh z

D
, (3.2)

Uz = −∂Ψ
∂x

= −ω0κ

(
1− κ
1 + κ

)
sin x

D
. (3.3)

The flow vorticity, ω, is in the y-direction only:

ω =
∂Ux

∂z
− ∂Uz

∂x
= ω0

(
1− κ
D

)2

, (3.4)

In the case of κ = 0, equations (3.1)–(3.3) describe the flow Ux = ω0 tanh z. In the
limit κ→ 1 and ω0(1− κ)→ Γ , the flow field is that created by a row of co-rotating
point vortices with circulation Γ located at z = 0, x = 2πn, n = 0, ±1, ±2, . . . . In the
present test case, we set ω0 = 1 and κ = 0.5.

DNS is performed for Re = 1/ν = 108, and thus the viscous effects are negligible
(cf. also Lowery & Reynolds 1986). The initial fluid velocity is prescribed by (3.2)
and (3.3). The initial velocity components Vx and Vz of the bubbles are set equal to
those of the local surrounding fluid,

Vx = Ux, Vz = Uz. (3.5)

We consider two different initial bubble distributions: a uniform distribution (2.3) and
a tanh-distribution (2.4) with α0 small enough to enable us to neglect the modification
of the carrier flow by the bubbles (e.g. α0 = 10−4). The bubble response time is set to
τb = 0.1.

DNS is performed in the domain 0 6 x 6 2π, 0 6 y 6 π/8, −1 6 ξ 6 +1 with
a mesh distribution, Nx = 64, Nz = 160 and Ny = 4 grid points in the x-, z(ξ)- and
y-directions, and for dimensionless time t 6 25. Although the Stuart flow studied
here is essentially two-dimensional, the numerical method uses a three-dimensional-
algorithm, where the flow is homogeneous in the y-direction. Accordingly, we use the
minimum number of mesh points (Ny = 4) in the y-direction. In order to exclude the
influence of gravity in this test case, we set g = 0 in (2.5) and (2.7).

Figure 3(a) shows the contours of the vorticity (solid lines) and bubble concentration
(grey scale) in an (x, z)-plane obtained from DNS at time t = 25 with initial uniform
bubble concentration. The figure shows that, owing to their negligible mass, but finite
added-mass inertia, the bubbles accumulate at the vortex centre (x = π, z = 0).
Consequently, the bubble concentration increases with time at the vortex centre,
where the local vorticity is maximum. On the other hand, the concentration decreases
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Figure 3. (a) Contours of the vorticity (lines) and bubble concentration (grey scale) in the Stuart
flow in the (x, z)-plane at t = 20, for uniform initial bubble concentration, C(t = 0) = α0. Vorticity
and concentration maxima, ωm = 0.99 and Cm = 5.3α0. The increments of the vorticity contours
coincide with those in the table for the bubble concentration. (b) Temporal development of the
maxima of the bubble concentration, Cm, in the Stuart flow (cf. figures 3a, b). (c) As in figure 3a,
but for the initial bubble concentration C(z, t = 0) = 0.5 (1 − tanh 2z); concentration maximum is
Cm = 3.46α0.

in the braid region, for x ' 0, 2π, |z| < 1, and remains unchanged in the free-stream
zone, for |z| > 1.

The growth of the bubble concentration at the vortex centre can be described
analytically provided that the bubble response time is small compared to the flow
timescale, i.e. (τb/τf)

2 � 1. The timescale, τf , in the Stuart flow is of the order
1/ω0 = 1, and (τb/τf)

2 ' (τbω0)
2 = 0.01� 1. In the vicinity of the vortex centre, for

x = π + x′, z = z′ and |x′| � 1, |z′| � 1, the fluid velocity components are those of
an elliptical vortex (see (3.2) and (3.3)):

Ux ' z′

1 + κ
, Uz ' − κ x′

1 + κ
. (3.6)
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Now the approximate solution for the bubble velocity, to the leading order in τb, is
written as (Druzhinin & Elghobashi 1998):

Vi = Ui + 2τb
DUi

Dt
+ O

(
τ2
b

τ2
f

)
. (3.7)

Substituting (3.6) for the fluid velocity components into (3.7), we obtain:

Vx ' Ux − 2τbκ x
′

(1 + κ)2
, Vz ' Uz − 2τbκ z

′

(1 + κ)2
. (3.8)

Thus, an approximate solution of (2.8) for the maximum bubble concentration, Cm
(at the vortex centre), can be written in the form:

Cm ' α0 exp

{
4τbκt

(1 + κ)2

}
. (3.9)

Figure 3(b) compares the temporal development of the bubble concentration at the
vortex centre, Cm(t), normalized by the reference concentration α0, obtained from
the analytical solution (3.9) for τb = 0.1 (dotted line) with that obtained from DNS
(solid line). The figure shows very good agreement between the DNS results and the
analytical solution (3.9) for time t 6 10. At later times, a small difference arises owing
to neglecting the higher-order terms in the approximate analytical solution (3.9).

Figure 3(c) shows the contours of the bubble concentration obtained from DNS
of the same flow as in figure 3(a), but with the initial tanh-distribution of bubble
concentration (2.4). In this case, a clockwise spiral streak of increased bubble con-
centration is created, extending from the braid region at (x = 0, z = 0) to the vortex
centre. Again, the concentration attains its maximum at the vortex centre but loses
the symmetry displayed in figure 3(a). Note that layers of increased C neighbouring
the layers of fluid devoid of bubbles are created owing to the entrainment of the fluid
from the upper stream, which is initially devoid of bubbles, into the lower stream,
which initially has uniform bubble distribution (i.e. for z < −1).

It is important to note that small-scale oscillations of the concentration are created
in the vicinity of a hyperbolic stagnation point (x = 0, z = 0) (figure 3c). The
development of these oscillations is caused by a complicated Lagrangian dynamics
of an individual bubble in the vicinity of the flow stagnation point. The reason for
this behaviour is that small perturbations of a Lagrangian tracer trajectory grow
exponentially in the vicinity of the hyperbolic stagnation point of the flow (Ottino
1990). Below, we discuss a similar effect of the bubble dynamics on the development
of the concentration field in the regions of SDML flow with a high local strain rate.

Comparison of the fluid velocity field (Ux,Uz) obtained from DNS at time t = 25
with the exact (inviscid) solution (3.2) and (3.3) shows that the maximum relative
differences in the velocity components, Ux and Uz , (normalized by the free-stream
velocity |Ux|(z → ±∞) = 1

3
) are 0.01 and 0.05, respectively. This deviation from the

exact solution is caused by the prescribed finite viscosity, ν = 1/Re = 10−8. Indeed, the
difference between the exact solution and the numerical viscous solution is evaluated
as ∆U ' √νt/∆t. Thus, for timestep ∆t = 0.01, we obtain ∆U ' 0.05 for time t = 25,
which is of the order of (even somewhat larger than) the observed absolute differences,
∆Ux = 0.003 and ∆Uz = 0.015. However, at later times the viscous effects result in
the vorticity roll-up, so that the flow becomes unsteady.
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We have also performed DNS of a Stuart vortex in the lateral (y, z)-plane, with
prescribed initial fluid velocity components Uy and Uz , and uniform constant Ux = 1
and initial bubble concentration. Comparing these DNS results with the analytical
solution (3.9) for the maximum concentration and the exact solution (3.2), (3.3) for the
fluid velocity shows agreement similar to that of the Stuart vortex in the (x, z)-plane.

Therefore, the DNS results of the bubble-laden Stuart vortex flow discussed above
show that our numerical procedure with the mapping z(ξ) (2.12) and the LEM solver
reproduces the flow dynamics with sufficient accuracy, and resolves the gradients of
bubbles concentration created by the preferential accumulation.

4. Three-dimensional SDML with uniform bubble concentration
In this section, we present the results of DNS of a bubble-laden, three-dimensional,

spatially developing forced mixing layer, with both one- and two-way coupling, and
a uniform bubble concentration (2.3) at the inflow plane.

4.1. Bubble-laden three-dimensional SDML with one-way coupling

4.1.1. Instantaneous flow field

Initially, the deviations Ũi (i = x, y, z) of the instantaneous fluid velocity field
from the reference velocity, Uref , are set equal to zero throughout the computational
domain. In order to minimize the influence of the initial conditions, we first compute
only the fluid flow (equations (2.5) and (2.6)) until time t = 60. By this time, the initial
flow field is ‘washed’ out of the computational domain by the mean advection, and
the carrier flow can be regarded as nearly stationary. At t = 60, we inject the bubbles
into the flow, and start solving (2.7) and (2.8) in addition to (2.5) and (2.6).

The initial bubble concentration is uniformly constant throughout the computa-
tional domain, C(t = 60) = α0, and is assumed small enough (e.g. α0 = 10−4) for us to
neglect the influence of the bubbles on the carrier flow (one-way coupling). Thus, the
source term in the fluid momentum equation (the last term on the right-hand side of
(2.5)) is set equal to zero.

The dimensionless bubble response time is prescribed as τb = 0.05, and the dimen-
sionless bubble diameter is db = (36ντb)

1/2 ' 0.067, where ν = 1/Re and Re = 400,
so that db � δω0 = 1.

In order to show that the values of the physical parameters in our DNS are similar
to those in a typical laboratory experiment, we calculate the dimensional velocity
difference and vorticity thickness, ∆U∗ and δ∗ω0:

∆U∗ =

(
g∗

g
ν∗Re

)1/3

, δ∗ω0 =

(
g

g∗

)1/3

(ν∗Re)2/3, (4.1)

where g is the dimensionless acceleration due to gravity, prescribed as g = 1, and ν∗
and g∗ are the dimensional fluid kinematic viscosity and gravitational acceleration.
Therefore, substituting g∗ = 980 cm s−2, and ν∗ = 0.01 cm2 s−1 (for water at room
temperature) in (4.1) gives the dimensional vorticity thickness δ∗ω0 ' 0.25 cm and
velocity difference ∆U∗ ' 16 cm s−1. The dimensional bubble diameter is d∗b = dbδ

∗
ω0 '

170 µm. These parameters are of the order of those in typical laboratory bubble-laden
flows (cf. experiments by Rightley 1995).

The dimensionless dissipation lengthscale of the flow, ldiss, can be estimated as
ldiss ' (2π/Reωmax)

1/2. The maximum vorticity is of the order ωmax ' 1 throughout
the simulation, so that ldiss ' 0.13. Thus, for the given grid cell size (∆x = ∆y =
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∆z(z = 0) = 1
6
) in each coordinate direction (x, y, z), the product ldisskmax ' 2.5,

where kmax is the maximum resolved wavenumber (kmax = π/∆x). This means that the
smallest scales of the fluid motion are well resolved in our DNS (cf. Yeung & Pope
1988).

Since the bubble diameter is smaller than the flow dissipation scale, and much
smaller than the initial layer vorticity thickness, db � ldiss � δω0, the conditions
needed for deriving the two-fluid formulation are satisfied. For the considered bubble
diameter, the bubble Reynolds number remains less than 1 throughout the simulation.
The conditions Reb < 1 and db � ldiss are consistent with the assumptions used in
deriving the bubble equation of motion (2.7) (Druzhinin & Elghobashi 1998).

The initial bubble velocity at any location is set equal to the local instantaneous
fluid velocity:

Ṽi = Ũi. (4.2)

The simulation is continued until time t = 160.
Figure 4(a) shows the instantaneous contours (in colour) of the y-component of the

vorticity, ωy , in an (x, z) plane at a spanwise location y = 2.67, at times (i) t = 150,
(ii) t = 155 and (iii) t = 160. This vorticity, ωy , is obtained from the instantaneous

fluid velocity field Ũi according to:

ωy =
dUref

dz
+ ∂zŨx − ∂xŨz. (4.3)

Forcing at the fundamental mode frequency, Ω0, enhances the roll-up of the spanwise
vorticity, whereas forcing at the frequencies Ω1 and Ω2 speeds up the growth of
subharmonics and the vortex pairing process. The figure shows that the vortex pairing,
enhanced by the forcing at the subharmonic frequency Ω1, occurs at 30 6 x 6 40.
This is in agreement with the results of Lowery & Reynolds (1986) who used the same
reference velocity profile (2.1) and forcing at the same frequencies Ω0,1,2. However, in
our DNS, the streamwise location of the pairing fluctuates in time, since the phases
of the forcing modes are random-walked (cf. Appendix A). The growth of the first
subharmonic mode increases the streamwise lengthscale (measured by the distance
between the centres of consecutive spanwise rollers) from λx ' 7, the lengthscale of
the fundamental mode, at x ' 30, to λx ' 10 at x ' 60 (after the vortex pairing).
Comparing the locations of the rollers at three different times in figure 4(a) shows
that the rollers are advected with velocity Ua = 1.5. Note also that the vortices exit
the domain naturally, without being distorted, thus confirming the accuracy of the
advection boundary condition (2.16) at the outflow plane (x = 80).

Figure 4(b) shows the instantaneous bubble concentration contours in an (x, z)-
plane, normalized by the maximum concentration in that plane, at the same y-location
and times as figure 4(a). The figure shows that bubbles, owing to their added-mass
inertia (Maxey 1987), accumulate in the centres of the spanwise (ωy) rollers (cf. blue
for local maxima of C and ωy in figures 4(a) and 4(b). The figure also shows that the
preferential bubble accumulation creates streaks of fluid devoid of bubbles (magenta)
extending from the braid zones (x ' 40, x ' 54 and x ' 64) to the peripheries of the
rollers (x ' 50, x ' 60 and x ' 70 in figures 4(a)(iii) and 4(b)(iii) at time t = 160).
On the other hand, C remains uniform (yellow in figure 4(b) in the irrotational
flow region (|z| > 5). This structure of the concentration field is similar to that in
the bubble-laden Stuart vortex flow (figure 3a). However, the sequence of streaks
becomes more complex downstream, as the spanwise rollers grow in size (cf. rollers
at x ' 50, 60 and 70 in figure 4(a)(iii) and the concentration field in figure 4(b)(iii).
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Figure 4 (a). For caption see page 41.

Comparison of the bubble-phase concentration distribution inside the centres of the
spanwise rollers at different times (cf. figures 4(i), 4(ii) and 4(iii) with t = 150, 155 and
160, respectively) shows that the growth of C in the vortex centres is accompanied
by the creation of sheet-like patterns of increased C in the rollers consisting of two
corotating vortices. For example, compare the rollers at locations x ' 48, x ' 58
and x ' 70 in figures 4(a)(iii) and 4(b)(iii). On the other hand, there are no sheets
of increased C in the rollers where the flow is dominated by a single ωy-vortex (for
example, the roller at x ' 76 at t = 155, figures 4(a)(ii) and 4(b)(ii)). We discuss this
point in more detail below.

SDML becomes three-dimensional owing to the development of the streamwise
vortices (Lasheras et al. 1986). The evolution of these streamwise (ωx) vortices (also
denoted as ‘ribs’ (Hussain 1983; Buell & Mansour 1989; Rogers & Moser 1992) has
been studied in detail both experimentally by Bernal & Roshko (1986), Lasheras et
al. (1986) and Lasheras & Choi (1988), and numerically by Buell & Mansour (1989)
and Rogers & Moser (1992). The primary mechanism governing their development
is the stretching of the streamwise vortex lines in the braid regions between the
consecutive spanwise rollers. In our DNS, these vortices are created by the inflow
boundary condition (cf. Appendix A).
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Figure 4 (b). For caption see page 41.

In order to examine the three-dimensional structure of three-dimensional bubble-
laden SDML, we plotted in figures 4(c) and 4(d) the instantaneous iso-surfaces
of the enstrophy (ω2 = 0.1) and bubble concentration (C = 1.2α0) in the domain
40 6 x 6 80, 0 6 y 6 5.333 and −6.5 6 z 6 6.5 at time t = 160. Note that since
ω2 =

∑
i=x,y,z ω

2
i , ω

2 ' ω2
x, if ω2

x � ω2
y , ω

2
z , and ω2 ' ω2

y , if ω2
y � ω2

x, ω
2
z , respectively.

Thus, the iso-surface of ω2 coincides with that of ω2
y inside the spanwise rollers (where

ω2
y � ω2

x, ω
2
z ), whereas the iso-surface of ω2 coincides with that of ω2

x in the vicinity

of the streamwise ribs in the braid region between the rollers (where ω2
x � ω2

y , ω
2
z ).

The chosen value of the enstrophy (ω2 = 0.1) is close to the maxima of ω2
x in the ribs

at x = 58 and x = 68. Thus, the iso-surface in figure 4(c) shows both the structure of
the ωy-rollers (x ' 50, 60 and 70 in figure 4a(iii)), where ω2 ' ω2

y � ω2
x, and that of

the ωx-ribs (where ω2 ' ω2
x � ω2

y).
Figure 4(d) shows the iso-surface of the bubble concentration C = 1.2α0. The figure

shows that bubbles accumulate in the centres of the ωy-rollers, located at x ' 50, 60
and 70, and that the bubble concentration is reduced in the region between the ribs
owing to a higher strain and pressure, as shown by Lasheras et al. (1986), and is
increased in the centres of the ribs with higher enstrophy. As a result, a cylindrical
‘dumb-bell’ pattern of increased concentration is created inside the spanwise roller at
x ' 60.
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In order to examine the local flow field in more detail, we plot in figures 4(e)
and 4(f) the cross-sections of the streamwise vorticity and bubble concentration by
(y, z)-planes at x = 68, t = 160. The figures show that the bubbles accumulate in
spanwise sheets and also in the centres of streamwise vortices (patches of positive
and negative ωx in figure 4e). At the same time, the concentration, C , is reduced in
the region of higher strain between the ωx-vortices.

Figures 4(b) and 4(d) show that bubbles accumulate in spanwise sheets inside the
ωy-roller at x ' 70. On the other hand, in the roller located at x ' 76 at time t = 155
(figure 4a(ii)) the sheets of the bubble concentration are not created (cf. figure 4b(ii)
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at x ' 76). We explain below the reason for this difference in the local structure of
the bubble concentration field.

The sheet-like patterns of the concentration (C-sheets) are created owing to the
combined effects of the bubbles (added-mass) inertia, buoyancy and the local structure
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of the flow in a ωy-roller (for example, the roller at x ' 70, figure 4a(iii)). The added-
mass inertia of the bubbles causes their preferential accumulation at the centres of
ωy-vortices (cf. blue regions for both ωy and C in figure 4b). Buoyancy, on the other
hand, causes an upward displacement of the bubbles from the regions of large ωy ,
thus reducing the effect of their preferential accumulation. Thus, both the preferential
accumulation and buoyancy contribute to the local growth of the concentration
gradients.

In order to explain why the C-sheets are created inside the roller at x ' 70 and
t = 160 (figure 4a(iii)), while there are no C-sheets inside the roller at x ' 76 and
t = 155 (figure 4a(ii)), we plot in figure 4(g) the contours of the sum, s2, of the squares
of the symmetric components of the strain rate tensor in the x- and z-directions, ∂xUx

and ∂zUz:

s2 = (∂xUx)
2 + (∂zUz)

2, (4.4)

evaluated at streamwise locations 60 6 x 6 80 and times t = 155 (figure 4g(i)) and
t = 160 (figure 4g(ii)). Figures 4(g)(iii) and 4(g)(iv) show the corresponding contours
of the bubble concentration at the same streamwise locations and times as figures
4(g)(i) and 4(g)(ii).

Now, figure 4(a)(iii) shows that there are two local maxima of ωy-vorticity in the
roller located at x ' 70 at t = 160. At an earlier time (t = 155), this roller was located
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Figure 4. (a) ωy-vorticity contours in the (x, z)-plane at y = 2.67 of the three-dimensional spatially
developing mixing layer at different times, (i) t = 150, (ii) t = 155 and (iii) t = 160. Vorticity maxima
are ωm = 1.34, 1.35 and 1.29, respectively. (b) Bubble concentration contours in the (x, z)-plane at
y = 2.67 of the three-dimensional SDML at different times, (i) t = 150, (ii) t = 155 and (iii) t = 160.
Concentration maxima are (i) Cm = 1.74α0, (ii) Cm = 1.88α0 and (iii) Cm = 1.92α0, respectively.
(c) Iso-surface of the flow enstrophy, ω2 = 0.1, of the three-dimensional SDML at time t = 160.
(d) Iso-surface of the bubble concentration, C = 1.2α0, of three-dimensional SDML at time t = 160.
(e) ωx-vorticity contours in (y, z)-plane at x = 68 of three-dimensional SDML at time t = 160.
Maximum vorticity ωm = 0.41. (f) Bubble concentration contours in the (y, z)-plane at x = 68 of the
three-dimensional SDML at time t = 160. Maximum concentration Cm = 1.74α0. (g) Contours of the
strain rate, s2, and bubble concentration, C , in the (x, z)-plane at y = 2.67 of the three-dimensional
SDML at (i)(iii) t = 155 (s2m = 0.31, Cm = 1.78α0), and (ii)(iv) t = 160 (s2m = 0.19, Cm = 1.92α0).
(h) z-profiles of the ωy-vorticity component and bubble concentration, C , normalized by their
respective local maximum values, ωm = 0.99 and Cm = 1.63α0, at x = 68, y = 2.67 and t = 160.

upstream at x ' 62 (cf. ωy-patches of blue in figures 4a(ii) and 4a(iii)). Figures 4(a)(ii),
4(a)(iii), 4(g)(i) and 4(g)(ii) show also that there is a region of reduced vorticity and
enhanced strain rate between the ωy-maxima at x ' 62, −3 < z < 2 (t = 155) and
x ' 68, −4 < z < 1 (t = 160). Figures 4(g)(iii) and 4(g)(iv) show that sheets of the
increased concentration, C , are created inside this roller at the same locations of large
s2 in figures 4(g)(i) and 4(g)(ii). On the other hand, figure 4(a)(ii) shows that the flow
inside the neighbouring roller, located at x ' 76 and t = 155, is dominated by a single
ωy-vortex, and figure 4(g)(i) shows that the local strain rate, s2, is nearly zero inside
this roller. The corresponding C remains relatively smooth and has a local maximum
at the centre of the roller (cf. figure 4b(ii) (blue) and figure 4g(iii) at x ' 76).

Thus, the accumulation of bubbles in sheets can be attributed to the development of
the bubble concentration gradients along the directions of stretching and contraction
of the fluid straining motions inside the roller. It is well known (Ottino 1990) that



42 O. A. Druzhinin and S. E. Elghobashi

advection of a non-uniform scalar field decreases the scalar gradients in the direction
of stretching (for positive strain rate), and increases the gradients in the direction of
contraction (negative strain rate); hence, the sheet-like patterns of the scalar concen-
tration. Now, the bubbles added-mass inertia causes their preferential accumulation
in the high-enstrophy regions of the flow (e.g. the centres of ωy-rollers). On the other
hand, since the bubble response time is relatively small, τb � 1/ω0 = 1, the bubble
velocity to the zeroth order in (τbω0) equals the sum of the fluid velocity and the
terminal velocity, i.e. Vi ' Ui+Wδiz +O(τbω0). Therefore, similar to the passive scalar
behaviour, the bubble concentration gradients are also reduced in the direction of
stretching, and increased in the direction of contraction in the high-strain flow region
inside the roller (e.g. the roller located at x ' 60 at time t = 155 (figures 4a(ii) and
4g(i)), and the same roller at x ' 70 and t = 160 in figures 4a(iii) and 4g(ii)). As a
result, the sheets of increased C are created in the rollers with high local strain rate
(cf. figures 4a, 4b(iii) and 4g(iii),(iv)).

It is important to note that the transport equation for the bubble-phase concentra-
tion, C(r, t), is identical to the equation of the instantaneous probability distribution
function (PDF) of the physical coordinate of a single bubble, r(t). Therefore, (2.8)
can be considered also as the equation for the instantaneous PDF of the bubble
location. Thus, the development of C-sheets corresponds to the spatial oscillations of
the instantaneous PDF of the location of a single bubble in the flow field of a roller
having two local vorticity maxima and an enhanced strain-rate between the maxima
(figures 4a, 4b, 4g). Similar oscillations of the bubble concentration are created in
the Stuart vortex test case discussed above in § 3. The physical explanation of these
spatial oscillations is that the trajectories of individual bubbles can be complicated in
the vicinity of hyperbolic stagnation points in the regions of high strain rate (Ottino
1990). Figure 4(g) shows clearly the correlation between the spatial locations of the
C-sheets and the maxima of s2. The figure shows also that thickness of the C-sheets
typically is of the order of the characteristic lengthscale of s2.

In order to examine the spatial resolution of the sheet-like structure of bubble
concentration and the carrier flow ωy-vorticity in the z-direction, we display in figure
4(h) the profiles of ωy(z) and C(z) along the cross-section x = 68 of the flow field
shown in figures 4(a) and 4(b)(iii). The locations of the grid nodes in the z-direction
are denoted by symbols. The figure shows that the width of the regions of increased
magnitudes of ωy-vorticity and C is typically more than three grid spacings. Thus,
both the ωy-layers and C-sheets are resolved in our DNS. We also performed a test
of the grid-dependence of a two-dimensional numerical solution for both the carrier
flow and the bubble phase (see Appendix B). The test shows that reducing both
the grid spacing and the timestep by factor 4

3
essentially reproduces flow obtained

from a simulation with the mesh (i.e. in the x- and z-directions) and timestep used
in the DNS of the three-dimensional bubble-laden SDML. The maximum difference
between the corresponding results is of the order of 4%. Therefore, we confirm
that the oscillations in the concentration profile C(z) exceeding 4% of the absolute
maximum (i.e. 0.06α0) in figure 4(h) are physical (i.e. not created artificially), and the
C-sheets are adequately resolved by the LEM solver.

4.1.2. Average fields

In this section we examine the distributions of the fluid velocity and bubble
concentration, averaged both in space and time, and their variance. We also use the
average velocity profile to evaluate the ML average vorticity thickness.

An average of a field f (where f denotes the fluid velocity or bubble concentration)
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(b) Average fluid velocity z-component profile, 〈Uz〉, at different streamwise locations. (c) Velocity
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0,
at different streamwise locations. Re = 400 (one-way, 3D)

is evaluated in two steps. First, a spatial line-average in the spanwise direction,
〈f(x, z, t)〉y , is evaluated at a given point in the (x, z)-plane and time t via summation of
the instantaneous flow fields f(x, yj , z, t) at the grid points yj, j = 1, . . . , Ny, (Ny = 32).
Then, a time average, 〈f(x, z)〉, is obtained via summation of the line-averaged flow
fields 〈f(x, z, tn)〉y obtained at consecutive times tn = n, n = 81, 82, . . . , 160. Thus, the
spanwise time average field, 〈f(x, z)〉, is evaluated according to:

〈f(x, z)〉 =
1

Ny

1

80

Ny∑
m=1

160∑
n=81

f(x, z, ym, tn). (4.5)

The average fields are obtained for t > 80 because the time interval ∆t = 20,
measured from the time of injection of the bubble-phase, t = 60, is large enough
compared to both the characteristic eddy turnover time of the rollers (estimated as
1/ω0 ' 1) and the bubble response time, τb = 0.05. Thus, the bubble-phase motion
can be regarded as nearly stationary for t > 80.

Figures 5(a) and 5(b) show the average fluid velocity components, 〈Ux〉 and 〈Uz〉,
evaluated according to (4.5). The 〈Ux〉 profiles have the typical tanh-shape and
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become more smooth (i.e. the gradient ∂〈Ux〉/∂z is reduced) owing to the growth of
ML lateral thickness with the downstream distance. The 〈Uz〉 profiles have positive
and negative asymptotic values at large negative and positive z, respectively, owing to
the entrainment of the irrotational fluid into the ML core. 〈Uz〉 changes its sign in the
ML core region, and the shape of the profile depends on the streamwise location. For
example, at x = 25, 40 and 55, 〈Uz〉 changes its sign within the zone −3 6 z 6 3 owing
to the entrainment of the fluid into the spanwise rollers from the high- and low-speed
streams (cf. figure 1 of Dimotakis 1986). At x = 70, the fluid moves preferentially
downwards, so that 〈Uz〉 is negative in the ML core region (−5 6 z 6 5), indicating
a pronounced asymmetry of the layer in the z-direction.

Figures 5(c) and 5(d) show the variance of the fluid velocity, 〈U ′2〉, and that of the
bubble concentration, 〈C ′2〉, computed from:

〈U ′2〉 =
∑
i=x,y,z

〈(Ui − 〈Ui〉)2〉 (4.6)

and

〈C ′2〉 = 〈(C − 〈C〉)2〉. (4.7)

As expected, the fluid velocity variance increases with distance downstream owing
to the growth of the fundamental and subharmonic instability modes which are
responsible for the spanwise vortex roll-up and pairing. At any x location, the
〈U ′2〉(z) profile has its maximum in the ML core region (|z| < 1), and tends to
zero in the irrotational fluid region (|z| > 5). A nearly similar behaviour by the
concentration variance is observed. However, the 〈C ′2〉-profile becomes more wrinkled
farther downstream owing to the bubble preferential accumulation in the spanwise
rollers. Note also that a secondary peak of 〈C ′2〉 is created at the ML upper edge
(figure 6d, z ' 3.5 and streamwise locations x = 55 and 70). This peak can be
attributed to the concentration fluctuations caused by the bubble accumulation in
the pairs of counter-rotating rib vortices, joining the tops of the spanwise rollers and
moving upwards owing to their self-induction (figures 4a to 4f). Another source of
the concentration fluctuations at the upper edge of the ML is the reduction of the
concentration at the periphery of the (ωy) rollers owing to the bubble preferential
accumulation in the rollers centres.

Figures 5(a)–5(d) show the growing ML asymmetry in the z-direction, since the
z-coordinate of the inflection point of 〈Ux〉 profile (figure 5a), and the maxima of
the variances, 〈U ′2〉 and 〈C ′2〉, are shifted towards negative z for x > 55. This is in
agreement with the results of other studies by Dimotakis (1986), Koochesfahani &
Dimotakis (1986) and Lowery & Reynolds (1986) which show the bending of ML
towards the low-speed stream and the preferential entrainment of the fluid from the
high-speed stream.

In order to characterize the streamwise development of the 〈Ux〉 velocity profile
and the flow asymmetry, we evaluate the average ML vorticity thickness, δω , and ML
deflection parameter, ∆Π , defined for each x as:

δω =

(
d〈Uz〉

dz

)−1

max

(4.8)

and

∆Π = Π+ +Π− =

∫ z∗

0

(〈Ux〉 −Uref ) dz +

∫ 0

−z∗
(〈Ux〉 −Uref ) dz, (4.9)

where Uref (z) is the reference velocity (2.1) and z∗ = 4 ln 95 ' 18.22 (obtained from
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Figure 6. Streamwise development of the average vorticity thickness, δω , and the layer deflection
parameter, ∆Π .

(2.13) for ξ = 1− 2/Nz, Nz = 96). The quantities Π± represent the modifications of
the fluid mass flux in the high- and low-speed streams, caused by the ML streamwise
development and the entrainment of the irrotational fluid into the ML core. Note
that Π+ = −Π− and ∆Π ≡ 0 in the TDML (which is periodic in the x-direction). In
that case, the average streamwise velocity profile is an anti-symmetric function of z
with respect to its inflection point, z = 0. In contrast, in our case of SDML, the rate
of entrainment of the irrotational fluid from the high-speed stream is larger than that
from the low-speed stream, i.e. Π+ > −Π−, and ∆Π > 0.

Figure 6 shows that, as expected, both δω and ∆Π grow with downstream distance,
for 0 6 x 6 62. This is in agreement with the results of other studies by Dimotakis
(1986), Koochesfahani & Dimotakis (1986) and Lowery & Reynolds (1986), indicating
that the growth of the ML vorticity thickness is accompanied by an increase of the
entrained mass flux of the high-speed stream as compared to that of the low-speed
stream. For larger x, δω and ∆Π saturate, and δω is even slightly reduced for x > 72.
Winant & Browand (1974) showed that the growth of the ML vorticity thickness
is governed by the vortex roll-up, the growth of the first subharmonic mode and
the pairing of the spanwise rollers. Thus, the saturation of the growth of the ML
vorticity thickness and deflection parameter is caused by the suppression of the
fundamental mode and the saturation of the first subharmonic mode. A similar
streamwise development of δω was observed in numerical studies by Lowery &
Reynolds (1986).

4.2. Two-way coupling effects

Now we present the results of DNS of the bubble-laden three-dimensional SDML
with two-way coupling for a reference bubble volume fraction α = 0.01. All other
flow parameters are equal to those in the one-way coupling case discussed above. The
two-way coupling source term (i.e. the last term on the right-hand side of (2.5)) is
set equal to zero for time t < 80. Thus, the flow field at time t = 80 is identical to
that in the one-way coupling case. For t > 80, the source term is computed at every
timestep. The simulation is continued until time t = 160.
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the three-dimensional SDML at time t = 160. The bubble reference volume fraction α0 = 0.01.
(b) Modification of the fluid velocity variance, ∆〈U ′2〉 = (〈U ′2〉2w − 〈U ′2〉1w)/〈U ′2〉m, at different
streamwise locations. (c) Average buoyancy flux profile, 〈C ′U ′z〉/α0, at different streamwise locations.

Figure 7(a) shows the contours of the difference between the values of the in-
stantaneous spanwise vorticity (4.3) in the two-way and one-way coupling cases,
∆ωy = ω(2w)

y − ω(1w)
y , in an (x, z)-plane at y = 2.67 and time t = 160. The figure

shows that the modification of the flow vorticity is most pronounced near the centres
of the spanwise rollers located at x ' 50, 60 and 70 (figure 4a(iii)), where ∆ωy is
maximum and the bubble concentration is increased owing to the bubble preferential
accumulation. The two-way coupling creates regions of positive ∆ωy inside the rollers
neighbouring regions of negative ∆ωy . A similar dipole-like modification of the carrier
flow vorticity by the bubbles was observed by Ruetsch & Meiburg (1994) in their
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numerical simulation of a two-dimensional temporally growing bubble-laden shear
layer, using trajectory approach. Our explanation of the dipole-like modification of
the vorticity field, ∆ωy , is as follows.

The governing equation for the spanwise vorticity (y-component), defined in (4.3),
is obtained from (2.5) in the form:

Dωy
Dt

+Uref ∂xωy = ωj∂jŨy + ν∂2ωy − g∂x(C − Cref ), (4.10)

where summation over j(= x, y, z) is performed in the first term on the right-hand
side. The first and second terms on the right-hand side of (4.10) describe the stretching
and viscous diffusion of the vorticity, respectively. The last term describes the source
of modification of the carrier flow vorticity by the bubbles. This source term is
proportional to the negative x-component of the bubble concentration gradient.
Now since bubbles accumulate preferentially inside the spanwise (ωy) rollers, the
x-component of the concentration gradient changes its sign in the vicinity of a local
concentration maximum. Thus, ωy is reduced for positive ∂x(C −Cref ), and enhanced
for negative ∂x(C − Cref ), hence, a dipole-like vorticity production by the bubbles
(figure 7a). This production of ωy-vorticity by the bubbles is modified further by the
advection, stretching and viscous dissipation of ωy (cf. (4.10)).

In order to examine the modification of the fluid velocity fluctuations by the
bubbles, we plot in figure 7(b) the relative difference of the variance of the fluid
velocities in the two-way and one-way coupling cases, as defined in (4.5) and (4.6):

∆〈U ′2〉 = (〈U ′2〉2w − 〈U ′2〉1w)/〈U ′2〉m, (4.11)

normalized by the maximum variance of the velocity (obtained from the 〈U ′2〉1w-
profiles for each x-location in figure 5(b). The figure shows that the variance is
reduced, as compared to the one-way coupling case.

The reduction of the fluid velocity variance by the bubbles is caused by the two-
way coupling source term in the transport equation of the turbulence kinetic energy
(Druzhinin & Elghobashi 1998), E = 0.5〈U ′2〉. This source term equals g〈C ′U ′z〉, i.e.
an average buoyancy flux. We present this flux (with g = 1) at different streamwise
locations in figure 7(c). The figure shows that 〈C ′U ′z〉 is negative in the ML core
region for all x. Thus, the corresponding source term reduces the turbulence kinetic
energy in the ML core, as compared to the one-way coupling case (cf. figure 7b).

In order to quantify the influence of the bubbles on the ML streamwise de-
velopment, we compare the average ML vorticity thickness obtained from 〈Ux〉-
profiles according to (4.8), in the two-way and one-way coupling cases, δ(2w)

ω and
δ(1w)
ω . Figure 8(a) (top) shows the streamwise development of the relative difference

∆δω = (δ(2w)
ω − δ(1w)

ω )/δ(1w)
ω . The figure shows that the ML vorticity thickness in the

two-way coupling case is reduced for x 6 44, before the first vortex pairing (figure
4a), and is increased for x > 50, after the first pairing, as compared to the one-way
coupling case. The reason for this development of ∆δω will be explained below. This
behaviour is also in agreement with the streamwise development of the modification
of the average vertical fluid velocity, defined as

∆〈Uz〉 = 〈Uz〉2w − 〈Uz〉1w,
and shown in figure 8(b). This figure shows that 〈Uz〉 is reduced for negative z at
x = 55 (since ∆〈Uz〉 is negative). Thus, the two-way coupling reduces the entrainment
of the irrotational fluid into the ML core for x 6 55.

The reduction of the ML thickness before the streamwise location of the first vortex
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pairing (x 6 44, figure 4a) is a result of the suppression of the fluid velocity fluctuations
by the bubbles owing to the negative sign of the buoyancy flux (figure 7c). In this
region, the growth of δω is caused by the enhancement of the spanwise vorticity
which is initially governed by the Kelvin–Helmholtz instability (Michalke 1964).
Since the negative buoyancy flux reduces the fluid velocity fluctuations (Druzhinin &
Elghobashi 1998), the entrainment of the irrotational fluid into the ML core and the
growth of the vorticity thickness are also reduced, as compared to those of bubble-free
ML.

Farther downstream, after the first pairing, the growth of δω is governed by the
dynamics and pairing of the spanwise rollers in the one-way coupling case (Winant
& Browand 1974), and is modified by the dipole-like vorticity production in the
two-way coupling case (figure 7a, x > 44). In this flow region, the bubble-phase
concentration becomes strongly non-uniform, and the concentration fluctuations in-
crease with downstream distance, owing to the preferential accumulation of bubbles
in the centres of the ωy-rollers accompanied by the reduction of C in the streaks.
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In order to characterize the streamwise development of the bubble concentration
in the ML, we evaluate the thickness of the concentration variance distribution,
∆zC(x) = z2 − z1, such that in the interval (z2 < z < z1), for each streamwise lo-
cation (x), the concentration variance is larger than 2% of its absolute maximum,
〈C ′2〉(z1 < z < z2) > 0.02〈C ′2〉max, where 〈C ′2〉max = 0.23α2

0 and 0.20α2
0 in the one-way

and two-way coupling cases, respectively. Figure 8(a) (bottom) shows the streamwise
development of the difference (∆ZC − δω) in the one- and two-way coupling cases.
The figure shows that ∆ZC > δω for x > 60 for both one-way and two-way coupling.
The larger thickness of the concentration variance, ∆ZC , as compared to δω , is caused
by the reduction of the bubble concentration in the streaks at the peripheries of
the ωy-rollers, where the fluid motion is almost irrotational (figure 4b, also figure 3a
for the bubble-laden Stuart vortex). Since the fluctuations of the concentration create
streamwise gradients, ∂xC , the vorticity production owing to the two-way coupling (cf.
(4.10)) occurs not only in the ML core, but also at the peripheries of the ωy-rollers.
This vorticity production widens the ML vorticity distribution and enhances the en-
trainment of the irrotational fluid into ML core, hence the increase of δω owing to
the two-way coupling. The enhancement of the entrainment for x > 44, as compared
to the bubble-free case, results in a positive mean velocity difference ∆〈Uz〉 (figure 8b,
x = 70).

The difference (∆ZC − δω) (solid line in figure 8a) is increased by the two-way
coupling because the increased vorticity thickness, which is proportional to the char-
acteristic lengthscale of the spanwise rollers in the ML core, enhances the bubble
dispersion as compared to the one-way coupling case (dotted line in figure 8a).

5. Three-dimensional SDML with tanh-profile for inflow bubble
concentration

DNS of the bubble-laden three-dimensional SDML with a tanh inflow profile for
the bubble concentration (2.4) was performed for the same flow parameters and using
the same numerical procedure as in the case of the uniform bubble distribution (§ 4
above), with both one- and two-way coupling.

5.1. One-way coupling

In the one-way coupling case, all the characteristics of the carrier flow are identical
to those presented in § 4. Therefore, here we describe only the structure of the bubble
concentration field.

Figure 9(a) shows the instantaneous contours of the bubble concentration (in grey
scale) in an (x, z)-plane at the same y-location and times as figures 4(a) and 4(b). In
the case of the inflow tanh-profile Cref (z) (2.4), the high-speed (upper) stream is devoid
of bubbles, and the low-speed (lower) stream is laden with a uniform concentration of
bubbles at x = 0. As the bubbles are advected downstream and rise vertically owing
to buoyancy, they enter the high-speed stream, so that the concentration interface
is shifted from the initial location z ' 0, at x = 0, upwards into the high-speed
stream (z > 0). On the other hand, the downstream development of the spanwise (ωy)
rollers causes the entrainment of the fluid from the upper stream, which is devoid
of bubbles, into the ML core. This entrainment is accompanied by the preferential
accumulation of bubbles in the centres of ωy-vortices and the creation of streaks of
fluid with increased bubble concentration extending from the braids to the peripheries
of the vortices (cf. figure 3c for the bubble-laden Stuart flow). As in the case of a
uniform inflow Cref , sheet-like patterns of increased concentration are created owing
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same time as figure 9(a). Cref = 0.5α0(1−tanh 2z). (d) Mean concentration profile, 〈C〉/α0, at different
streamwise locations. Inflow bubble concentration Cref = 0.5α0(1 − tanh 2z). (e) Concentration
variance profile, 〈C ′2〉/α2

0, at different streamwise locations; Cref = 0.5α0(1− tanh 2z).

to the accumulation of bubbles in the rollers containing two corotating vortices (cf.
the rollers at x ' 60 in figure 9a(ii) and at x ' 68 in figure 9a(iii); see also figures
4a and 4b). On the other hand, the bubble concentration remains relatively smooth
inside the rollers where the flow is dominated by a single ωy-vortex (cf. figure 4a(ii)
at x ' 76).

The bubble concentration contours in the (y, z)-plane at x = 68 and t = 160 are
presented in figure 9(b). The corresponding ωx-vorticity field is shown in figure 4(e).
Figure 9(b) shows that sheets of increased bubble concentration are created both in
the vicinity of the interface located at z ' 5, and in the core of the spanwise (ωy)
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roller (see figure 4a(iii) at x ' 70, z ' −3). The figure shows that the concentration
sheets located in the vicinity of the interface (z ' 4) are distorted by the upward
advection of the fluid in the region between the vortices (y ' 2.7). The figure shows
also that the bubbles accumulate in the centres of streamwise (ωx) vortices (at y ' 1.5
and y ' 4, z ' −3).

In order to examine the spatial resolution of the bubble concentration (C) sheets
in the z-direction, we display in figure 9(c) the profiles of ωy(z) and C(z) along the
cross-section x = 68. The vorticity profile is identical to that of figure 4(h). Figure
9(c) shows that, as in the case of uniform inflow concentration profile, the typical
width of the regions of increased bubble concentration is several (more than four)
grid spacings (as, in figure 4h, the locations of the grid nodes in the z-direction are
denoted by symbols), so that C-sheets are adequately resolved by the the LEM solver
in this case as well. In order to validate further the accuracy of the LEM solver, we
performed a grid-dependence test of the corresponding two-dimensional numerical
solution (see Appendix B). The test shows that, as in the case Cref = α0, reducing the
grid spacing and timestep by factor 4

3
reproduces the flow obtained from a simulation

with the mesh used in the DNS of three-dimensional SDML3D, with the maximum
difference of 4%.

Figures 9(d) and 9(e) show the average bubble concentration and its variance
profiles obtained at different streamwise locations using the same averaging procedure
(4.5) and (4.7) as in the case of uniform Cref . Figure 9(d) shows that, as expected, the
upward shift of the concentration interface, which is located at z = 0 at the inflow
plane (x = 0), increases with downstream distance because of the bubbles rising
owing to buoyancy. Figure 9(e) shows that, as in the case Cref = α0, the concentration
variance grows with the streamwise distance. However, since the bubble concentration
is non-uniform at x = 0, the concentration variance is significantly larger than that
in the case of uniform Cref at all streamwise locations (see figures 5d and 9e), and,
as expected, for each x the maximum of 〈C ′2〉 occurs at a z-location where the
gradient of 〈C〉 is maximum (cf. figure 9d). Thus, in this case, the growth of the
fluctuations of the bubble concentration is governed mainly by the dynamics of the
concentration interface and its interaction with the spanwise rollers in the ML core.
On the other hand, the preferential accumulation of bubbles in the spanwise rollers
creates secondary peaks of 〈C ′2〉 located below the C-interface (cf. figures 9d and 9e,
see also figures 9a and 9b).

5.2. Two-way coupling

DNS of the bubble-laden three-dimensional SDML with a tanh-profile for the inflow
bubble concentration and two-way coupling has been performed for the same refer-
ence bubble volume fraction (α = 0.01), as in the case of uniform inflow concentration
profile, Cref = α0. All other parameters of the carrier flow and the bubble phase are
equal to those in the one-way coupling case discussed above.

As was mentioned in § 2, the conservation equation for the carrier fluid momentum
(2.5) is analogous to that of a stratified fluid with density (1−C)ρf . Therefore, in the
flow region where the bubble preferential accumulation is not pronounced (i.e. before
the location of the first vortex pairing, x 6 44), the effect of the bubbles on the carrier
flow is analogous to that of an unstably stratified flow considered by Druzhinin &
Elghobashi (1998).

We quantify the two-way coupling effects by evaluating the modification of the
fluid velocity variance, ∆〈U ′2〉 using (4.11) (figure 10a) and the ML average vorticity
thickness, ∆δω = (δ(2w)

ω − δ(1w)
ω )/δ(1w)

ω (figure 10b).
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Figure 10. (a) Modification of the fluid velocity variance, ∆〈U ′2〉 = (〈U ′2〉2w − 〈U ′2〉1w)/〈U ′2〉m, at
different streamwise locations; Cref = 0.5α0(1 − tanh 2z). (b) Streamwise development the relative
difference of the average vorticity thickness, ∆δω = (δ(2w)

ω − δ(1w)
ω )/δ(1w)

ω (two- vs. one-way coupling);
Cref = 0.5α0(1− tanh 2z).

Figure 10(a) shows the profiles of ∆〈U ′2〉 at four streamwise locations. The figure
shows that, as expected, the fluid velocity fluctuations are increased by the bubbles in
the region x 6 44, before the location of the first vortex pairing. This enhancement
of 〈U ′2〉 is a direct consequence of the influence of the unstable stratification due to
the inflow tanh-profile of the bubble concentration, Cref (z), (2.4). Increasing the fluid
velocity fluctuations is associated with a faster growth of the spanwise vortices and
the ML vorticity thickness, as compared to the bubble-free flow. Figure 10(b) shows
that, as expected, ∆δω > 0 for x 6 44.

Since the spanwise rollers grow with the downstream distance owing to vortex
pairings, the structure of the bubble concentration field becomes more complex owing
to the entrainment of the fluid that is devoid of bubbles from the upper stream into
the ML core, as well as the preferential accumulation of bubbles in the ωy-rollers. On
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the other hand, since the bubbles rise owing to buoyancy, the concentration interface
is shifted upwards and is located above the ML core (the region −5 < z < 2 where
the fluid velocity variance,〈U ′2〉, is larger than half of its maximum at each x-location,
see figure 5(c) for x = 55, 70). Thus, farther downstream (x > 44) 〈C〉 is almost
uniform in the ML core (see figures 4a, 9d and 5c). As a result, the fluid velocity
fluctuations are reduced by the two-way coupling for x > 44, similar to the case of
the uniform inflow bubble distribution.

Figure 10(b) shows that for x > 44 the modification of the ML vorticity thickness
is quite irregular. The growth of ∆δω in this region is governed by the effects of the
concentration gradients on the vorticity production in the sheets of increased C (cf.
(4.10)).

6. Conclusions

We have presented the results of direct numerical simulation (DNS) of a three-
dimensional spatially developing forced mixing layer laden with small spherical
bubbles. The volume fraction of the dispersed bubbles is assumed to be small enough
to enable us to neglect bubble–bubble interactions, but large enough to influence the
carrier fluid motion. The no-slip condition for the fluid velocity at the bubble surface
is assumed. The bubble Reynolds number is less than 1 throughout the simulation.
The two-fluid formulation (TF) is used (Druzhinin & Elghobashi 1998), where the
bubble phase is treated as a continuum characterized by its velocity and concentration
(or volume fraction). TF is implemented in DNS via a Lagrangian–Eulerian mapping
(TF-LEM) solver.

DNS of a bubble-laden three-dimensional SDML has been performed with both
one- and two-way coupling. Forcing at the inflow plane is used to induce the roll-up of
the spanwise vorticity and vortex pairing, and the development of pairs of streamwise
counter-rotating vortices, as proposed by Lowery & Reynolds (1986). Bubbles are
injected into the carrier flow when the initial flow field and transient fluid motions
are ‘washed out’ of the computational domain, and the flow is nearly stationary. We
consider two different inflow profiles of the bubble concentration (Cref (z)): a uniform
profile and a tanh-profile. In the latter case, the high-speed (upper) stream is devoid
of bubbles and the low-speed (lower) stream is uniformly laden with bubbles at the
inflow plane.

In order to validate our numerical procedure and the LEM solver, we have
performed simulations of a bubble-laden Stuart vortex flow with one-way coupling,
with both uniform and tanh initial distributions of bubbles, and negligible viscous
effects. We also performed a grid dependence test using our numerical procedure for
the simulation of a two-dimensional bubble-laden SDML, for both uniform and tanh
inflow distributions of bubbles (Cref ). The results show that our numerical procedure
satisfactorily resolves both the carrier flow dynamics and the bubble-phase structure.

The numerical results show that three-dimensionl-patterns of increased concentra-
tion of bubbles, C , are created owing to their preferential accumulation in the coherent
vortex structures of three-dimensional SDML (spanwise rollers and streamwise ribs).
In particular, C is increased in the centres of ωy-rollers and reduced in the streaks at
the periphery of the rollers and in the braid regions between the rollers and remains
uniform in the irrotational region. The results show also that sheets of increased con-
centration are created inside the rollers consisting of two corotating ωy-vortices (see
figures 4a, b). These sheets occur owing to the growth of the concentration gradients
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caused by the advection of bubbles in the high-strain region between the vortices. In
the case of the tanh-profile of Cref , the concentration sheets are created also owing to
the entrainment of the fluid devoid of bubbles from the high-speed stream into the
ML core (figure 9a).

It is important to note that the transport equation for the bubble-phase concentra-
tion, C(r, t), is identical to the equation of the instantaneous probability distribution
function (PDF) of the physical coordinate of a single bubble, r(t). Therefore, (2.8)
can be considered also as the equation for the instantaneous PDF of the bubble
location. Thus, the development of C-sheets corresponds to the spatial oscillations
of the instantaneous PDF of the location of a single bubble in the flow field of a
roller having two local vorticity maxima and an enhanced strain rate between the
maxima (figures 4a, b, g). The physical explanation of these spatial oscillations is that
the trajectory of a single bubble in such a roller can be quite complicated in the
vicinity of hyperbolic stagnation points in the regions of high strain rate (Ottino
1990). Figure 4(g) shows clearly the correlation between the spatial locations of the
C-sheets and the maxima of s2.

DNS of the bubble-laden three-dimensional SDML with two-way coupling was
performed with a bubble reference volume fraction 0.01 and the same boundary and
initial conditions as in the one-way coupling case.

The DNS results and the analysis of the instantaneous two-way coupling source
term in the equation of the spanwise (ωy) vorticity show that bubbles modify the
ωy-vorticity field in a dipole-like manner, creating neighbouring regions of enhanced
and reduced vorticity.

The results obtained for the uniform inflow profile of Cref show that the fluctuations
of the fluid velocity in the ML core are reduced by the two-way coupling at all
streamwise locations x, as compared to those of bubble-free ML. The results also
show that the ML average vorticity thickness in the two-way coupling case is reduced
for x 6 44, before the first vortex pairing (figure 4a), and increased for x > 44,
after the first pairing, as compared to the one-way coupling case. The reduction of
the ML thickness before the streamwise location of the first vortex pairing (x 6 44,
figure 8a) is a result of the suppression of the fluid velocity fluctuations by the
bubbles owing to the negative sign of the buoyancy flux (figure 7c). In this region,
the growth of δω is caused by the enhancement of the spanwise vorticity which
is initially governed by the Kelvin–Helmholtz instability (Michalke 1964). Since the
negative buoyancy flux reduces the fluid velocity fluctuations (Druzhinin & Elghobashi
1998), the entrainment of the irrotational fluid into the ML core and the growth of
the vorticity thickness are also reduced, as compared to those of bubble-free ML.
Farther downstream, after the first pairing, the bubble concentration becomes strongly
non-uniform, and the concentration fluctuations increase with downstream distance,
owing to the preferential accumulation of bubbles in the centres of the ωy-rollers
accompanied by the reduction of C in the streaks. Since the fluctuations of the
concentration create non-zero streamwise gradients of C , the vorticity production due
to the two-way coupling occurs not only in the ML core, but also at the peripheries
of the ωy-rollers. This vorticity production widens the ML vorticity distribution and
enhances the entrainment of the irrotational fluid into the ML core, hence the increase
of δω owing to the two-way coupling.

The results obtained for the inflow tanh-profile of Cref show that both the fluid
velocity fluctuations and the ML vorticity thickness are increased by the two-way
coupling upstream the location of the first vortex pairing owing to the ‘unstable’ inflow
stratification of the bubbles (Druzhinin & Elghobashi 1998). However, the velocity



56 O. A. Druzhinin and S. E. Elghobashi

fluctuations are reduced and the growth of the ML thickness becomes irregular farther
downstream, as the location of the concentration interface (i.e. the maximum of the
gradient of ∂C/∂z) is shifted upwards owing to the bubbles rise by buoyancy.

A typical run for the three-dimensional SDML, with one-way or two-way coupling,
for dimensionless time 0 6 t 6 160 takes less than 5 CPU-hours on a Cray T90.

This work was supported by ONR grant number N00014-96-1-0213 and by NASA
grant number NAG3-1831. The computations were performed on a Cray T90 located
at the Naval Oceanographic Center, Mississippi.

Appendix A. Inflow boundary conditions for the fluid velocity
In order to initialize the roll-up of the spanwise ML vorticity, we apply a forcing to

the Ux and Uz components of the inflow velocity. The forcing frequencies are those
of the fundamental mode and its first and second subharmonics (Lowery & Reynolds
1986), Ω0 = 4/3, Ω1 = 2/3 and Ω2 = 1/3. The forcing at the subharmonic frequencies
speeds up the pairing of the spanwise rollers. The resulting velocity components of
this forcing are:

Uf
x (z, t) = U0Re

{
n=2∑
n=0

Ûnx(z) exp [−i(Ωnt+ φn)]

}
, (A 1)

Uf
z (z, t) = U0Re

{
n=2∑
n=0

Ûnz(z) exp [−i(Ωnt+ φn)]

}
, (A 2)

where Re{. . .} denotes the real part of the sums inside the brackets. The random
phases (Sandham & Reynolds 1989) φn are obtained at each timestep as φn
(t + dt) = φn(t) + ηnπ/12, where ηn is a random number with a uniform distri-

bution (−1 < ηn < 1). In our simulation, we set U0 = 0.02. The eigenfunctions, Ûnx

and Ûnz , and eigenvalue kn are obtained for each Ωn (n = 0, 1, 2) by solving the
two-dimensional Rayleigh equation eigenvalue problem in the form:(

Uref − Ωn

k

)(
d2Ûz

dz2
− k2Ûz

)
− d2Uref

dz2
Ûz = 0, (A 3)

Ûx =
i

k

dÛz

dz
, (A 4)

where the reference velocity profile Uref (z) is given by (2.1), and the boundary
conditions are

Ûz = exp (∓kz), z → ±∞. (A 5)

The eigenvalue problem (A 3)–(A 5) is solved for each Ωn by a shooting method using
a matching condition at z = 0. The resulting eigenvalues are k0 = 0.8888− 0.12826i,
k1 = 0.4309− 0.09881i and k2 = 0.2088− 0.0582i.

In addition to the inflow harmonic forcing (A 1) and (A 2), we include a steady
flow field created by a pair of counter-rotating Gaussian vortices (Buell & Mansour
1989). The velocity components of this steady flow are:

Uv
y = ω0xr

2
0z

[
1− exp (−r2

1/2r
2
0)

r2
1

− 1− exp (−r2
2/2r

2
0)

r2
2

]
, (A 6)
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Uv
z = ω0xr

2
0

[
1− exp (−r2

1/2r
2
0)

r2
1

(y − y1)− 1− exp (−r2
2/2r

2
0)

r2
2

(y − y2)

]
, (A 7)

where ω0x and r0 are the core vorticity and radius, respectively, and

r1,2 = [z2 + (y − y1,2)
2]1/2. (A 8)

In our DNS, we set the vortex core locations at y1 = 8
3
' 2.333 and y2 = 3. The

dimensionless core vorticity and radius are prescribed as ω0x = 0.03 and r0 = 0.5δω0,
where the ML initial vorticity thickness δω0 = 1.

Therefore, the initial distance, in the y-direction, between the centres of the two
vortices is equal to 1.333. Since the flow is periodic in the y-direction, the lengthscale
of the disturbance, λy , is of the order of the length of the computational domain
in this direction (which is equal to 5.333). Thus, for the given fundamental mode
wavelength (λx ' 7, cf. figure 4a, at x ' 30), the prescribed lengthscale, λy , of the
spanwise disturbance is nearly equal to 2

3
λx. This value of λy agrees with the available

experimental data of Bernal & Roshko (1986), Lasheras et al. (1986), Lasheras &
Choi (1988) and theory (Pierrehumbert & Widnall 1982).

Therefore, the three velocity components, Ũx, Ũy and Ũz at the inflow plane (x = 0)
are prescribed to account for the combined effects of the harmonic forcing (A 1) and
(A 2) and the steady flow (A 6) and (A 7) created by the counter-rotating Gaussian
vortices, according to:

Ũx = Uf
x (y, z, t), Ũy = Uv

y(y, z), Ũz = Uf
z (y, z, t) +Uv

z (y, z). (A 9)

Appendix B. Grid-dependence test
Here, we present the results of the simulation of bubble-laden two-dimensional

SDML using two different grids: Nx = 480, Ny = 4, Nz = 96 (timestep ∆t = 1
60

) and

Nx = 640, Ny = 4, Nz = 128 (timestep ∆t = 1
80

). In the first case, the resolution in
the x- and z- directions is identical to that in the case of three-dimensional SDML.
Although the flow is homogeneous in the spanwise (y) direction, the simulations were
performed using the same numerical procedure as three-dimensional SDML.

In the considered (two-dimensional) case, the forcing at the inflow plane (x = 0)
was applied only to components Ux and Uz of the fluid velocity, and component
Uy was set equal to zero. Only time-dependent forcing with components Uf

x (z, t) and
Uf
z (z, t) was applied, and the steady components Uv

y and Uv
z (due to the pair of

counter-rotating Gaussian vortices) were set equal to zero. In these test simulations,
we excluded random phases from the forcing functions, Uf

x and Uf
z . All other flow

parameters, boundary conditions and bubble characteristics were the same as in the
DNS of three-dimensional SDML.

Figures 11(a)(i), (ii) and 11(b)(i), (ii) compare the contours (in grey scale) of the
ωy-vorticity and of the bubble concentration obtained from the simulations using the
two grids, (i) 480× 4× 96 and (ii) 640× 4× 128, at time t = 80 for the tanh-profile
of the inflow bubble concentration (2.4). Now, our numerical procedure is second-
order accurate both in space and time. Thus, reducing both the distance between
the grid points, ∆x, and the time step, ∆t, each by a factor 4

3
reduces the numerical

error by a factor 16
9
' 1.8 (i.e. by 40%). On the other hand, comparing figures

11(a)(b)(i) and 11(a)(b)(ii) shows that the difference between the magnitudes of the
maxima of vorticity and the bubble concentration obtained in the two-dimensional
simulations with the two different grids is less than 2% for the vorticity and 4% for
the concentration. Thus, we conclude that the numerical diffusion in our simulation
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Figure 11. (a) Contours of ωy-vorticity of the two-dimensional SDML in (x, z)-plane at t = 80

for two meshes: (i) 480 × 4 × 96 (timestep ∆t = 1
60

) and (ii) 640 × 4 × 128 (∆t = 1
80

). Vorticity
maxima are (i) ωm = 1.04 and (ii) ωm = 1.02. (b) Contours of the bubble concentration, C/Cm, of the
two-dimensional SDML in the (x, z)-plane at t = 80 for two different meshes: (i) 480×4×96 (timestep
∆t = 1
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) and (ii) 640×4×128 (∆t = 1

80
). (c) A magnified view of the region (64 6 x 6 72,−4 6 z 6 4)

of the concentration field of figure 11(b).
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is negligible, since increasing the resolution accuracy by 40% causes a negligible
correction of the numerical solution. In particular, figures 11(a) and 11(b) show that
the simulation with grid 640×4×128 displays the details of the bubble accumulation
in sheets (cf. ωy-rollers at x ' 70).

In order to compare in detail the structure of the concentration (C) sheets in two
simulations, we select the region of the flow in figure 11(b) (64 6 x 6 72,−4 6 z 6 4)
and magnify it in figure 11(c). Thus, figure 11(c)(i) is for a grid of 480× 4× 96 points,
whereas figure 11(c)(ii) is for a grid of 640× 4× 128 points.

Both figures 11(c)(i) and 11(c)(ii) show that there are nine sheets of increased
concentration (the dark zones) in the region −0.4 6 z 6 3.8. Note that for a finer
grid 640× 4× 128 (bottom) the C-sheets are slightly shifted upwards in the vertical
(z) direction as compared to the coarser grid 480× 4× 96.

Note also that the small-scale C-oscillations are not identical for the two grids
in the region −0.5 6 z 6 −3; 64 6 x 6 68 (figures 11(c)(i) and (ii)). However,
the grey scale for the contours of C/Cm in figure 11(c) shows clearly that the local
maxima in this region are of a smaller magnitude (about 0.4) as compared to the
concentration maxima in the C-sheets in the region z > −0.5; 67 < x < 68 whose
magnitudes range from 0.7 to 1. Since C = α0 approximately equals the reference
concentration for z < −1 (since tanh(−2) ' −0.96, cf. (4)) and α0/Cm ' 0.36 (for
Cm = 2.8α0), the magnitude of the instantaneous concentration fluctuations in the
region z < −0.5 can be evaluated as C/Cm − α0/Cm ' C/Cm − 0.36. In the region
z < −0.5, x ' 66, C/Cm ' 0.4, and therefore the magnitude of the C-fluctuations
is about (0.4 − 0.36) = 4% of the reference concentration level, α0. Thus, increasing
the number of mesh points, from the coarse to the fine grid, by 80%, results in a
difference of the concentration maxima in the C-sheets by 4%, while the number
of well-pronounced C-sheets remains grid-independent. This result confirms that the
formation of C-sheets is a physical phenomenon and not a numerical artifact.
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